来源:赛斯拜克 发表时间:2023-07-07 浏览量:402 作者:awei
数据处理是高光谱相机应用过程中至关重要的环节。本文将介绍数据处理的概念、方法以及在高光谱相机中的应用。
数据处理是指对原始数据进行加工、处理和分析,从而提取有用信息和知识的过程。在高光谱相机应用中,数据处理主要包括以下几个方面:
预处理:对原始数据进行去噪、平滑、滤波等处理,以消除噪声、提高信噪比和光谱分辨率。
特征提取:对处理后的数据进行特征提取,以便实现对不同类别数据的区分和分类。特征提取方法包括主成分分析、偏最小二乘法、支持向量机等。
分类和识别:利用特征提取的结果,对数据进行分类和识别。常见的分类和识别方法包括最小距离分类、最大似然分类、支持向量机分类等。
在高光谱相机数据处理中,常用的方法包括:
基于像素的分析方法:对每个像素的数据进行处理和分析,以获取像素的光谱特征。这种方法适用于对单个像素的数据进行处理和分析。
基于区域的分析方法:对图像中的某个区域进行处理和分析,以获取该区域的光谱特征。这种方法适用于对图像中的某个特定区域进行处理和分析。
基于整个图像的分析方法:对整个图像进行处理和分析,以获取整个图像的光谱特征。这种方法适用于对整个图像进行处理和分析。
数据处理在高光谱相机中有着广泛的应用,主要包括以下几个方面:
遥感图像分析:利用数据处理技术对遥感图像进行预处理、特征提取和分类,可以实现对地物的准确识别和分类。
生物医学成像:利用数据处理技术对生物医学图像进行处理和分析,可以帮助医生更准确地诊断疾病。
环境监测:利用数据处理技术对环境监测数据进行处理和分析,可以更准确地监测和评估环境状况。
(一)高光谱谱格式转换之rar转mat格式
网上的很多公开高光谱数据集(如cave,icvl等)下载下来是raw格式,而一般用神经网络等方法对高光谱数据进行分类、训练、超分辨的时候,大多使用.mat格式的高光谱数据,碍于网上一直没有一个系统全面的方法,于是我总结了以下方法,分为两步:
1. 使用ENVI软件读取原格式的高光谱数据,选取需要的光谱通道,裁剪需要的像素区域,转化为.tiff格式保存
2. 使用MATLAB软件编写代码批量将.tiff格式数据转化为mat格式光谱数据
①RAW转tiff步骤:
导入高光谱图像
选择感兴趣的波段和裁剪区域
保存为tiff格式
②tiff转mat步骤:
%% 读取文件夹里的所有tif文件转化成mat格式(452,25-643.27) 28个通道规格化到0-1之间的测试集
% path='C:HIS-pre-deal430-740粉末New Folder' %保存放tiff的文件路径
% A = dir(fullfile(path,'*.tif'));
% A = struct2cell(A);
% num = size(A)
% for i=1:num(2)
% a=A((i-1)*6+1);
% a=a{1};
% deal = importdata(a);
% for j=1:28
% img(:,:,j)=deal(:,:,20+2*j);
% end
% img=single(img)/double(65536);
% k='C:HIS-pre-deal430-740粉末New Folder'; %保存结果的文件路径
% kk=num2str(i);
% kkk='.mat';
% kkkk=[k,kk,kkk];
% % save(kkkk,'img')
% end
(二)两种方法把高光谱图像缩放到0-1的数据集
%% 把高光谱图像转变成0-1的数据集
% % %% 方法一:
% img_expand = importdata('15.mat');
% % % img=im2double(img_expand);
% % % save('C:UsersDesktoptest1.mat','img')
% % %% 方法二:
% c=0;
% for i=1:31 //通道数为31
% b=max(max(squeeze(img_expand(:,:,i))));
% c=max(b,c);
% end
%img_h = importdata('test6.mat');
% img=double(img)/double(65536);
% save('C:UsersDesktoptest1.mat','img')
(三)高光谱数据预处理成规定大小和规格的数据集
%% 高光谱数据预处理成规定大小和规格的数据(660*660*12) %%%%%%%%
% img_expand = importdata('scene148.mat');
% for i=1:12 //通道数
% img(:,:,i)=img_expand(1:660,1:660,i); //长宽
% %imshow(img(:,:,i))
% end
% save('C:UsersDesktoptest1.mat','img')
(四)高光谱数据增强
由于拍摄的高光谱数据总是有限的,而神经网络需要大量的数据样本来训练拟合,一种行而有效的方式就是数据增强。
①旋转
%% 读取路径下的所有mat文件,并左旋转90(角度自行修改,右旋类似)
% path='C:HIS-pre-deal'
% A = dir(fullfile(path,'*.mat'));
% A = struct2cell(A);
% num = size(A)
% for i=1:num(2)
% a=A((i-1)*6+1);
% a=a{1};
% deal = importdata(a);
% for j=1:28
% dea=imrotate(squeeze(deal(:,:,j)),90);
% img_hs(:,:,j)=reshape(dea,1,512,512);
% end
% kk=num2str(i);
% k='C:HIS-pre-deal左旋转90';
% kkk='_左旋.mat';
% kkkk=[k,kk,kkk];
% save(kkkk,'img_hs')
% end
②缩放
%% 第一种缩放形式:对高光谱图像进行大小缩放,并保存到相应文件夹
% size=0.5; //缩放尺度
% for i=1:28
% deal=img(:,:,i);
% img_deal(:,:,i)=imresize(deal,size);
% % subplot(4,7,i)
% % imshow(deal)
% end
% img=0;
% img=img_deal;
% save('C:HIS-pre-dealDeal-imgscene010.mat','img')
%% 第二种缩放形式:剪切。
% img_hs = importdata('scene200.mat');
% for i=1:24
% deal=img_hs(100:429,100:429,i);
% deal=im2double(deal);
% img(:,:,i)=deal;
% % subplot(4,7,i)
% % imshow(deal)
% end
% save('C:HIS-pre-dealDeal-img660-1.mat','img')
(五)论文可用的光谱反射率等曲线对比图画法
%% 人物
% x=[455.65 462.49 469.33 476.17 483.02 489.9 496.78 503.65 510.55 517.45 524.36...
% 531.29 538.21 545.15 552.11 559.06 566.02 573.01 579.99 586.99 594.0 601.0 608.03 615.06 622.1 629.16 636.23 643.27];%x轴上的光谱波段值
% a=[0.046328 %a数据y值
% 0.042890
% 0.049437
% 0.052339
% 0.055272
% 0.057959
% 0.061730
% 0.064379
% 0.069850
% 0.076214
% 0.089666
% 0.109428
% 0.134469
% 0.151328
% 0.155143
% 0.163445
% 0.160454
% 0.145173
% 0.134909
% 0.119050
% 0.107735
% 0.092402
% 0.078581
% 0.073911
% 0.068458
% 0.066618
% 0.064307
% 0.061029]; %b数据y值
% b=[0.050210
% 0.048562
% 0.047848
% 0.048780
% 0.053608
% 0.054584
% 0.062421
% 0.066507
% 0.070665
% 0.082705
% 0.092355
% 0.112599
% 0.148814
% 0.160001
% 0.164293
% 0.159431
% 0.150049
% 0.139673
% 0.123176
% 0.113360
% 0.104669
% 0.093209
% 0.083308
% 0.078677
% 0.072299
% 0.070175
% 0.066874
% 0.067031];
% c=[0.032769 %c数据y值
% 0.033612
% 0.033636
% 0.035964
% 0.039693
% 0.044313
% 0.052775
% 0.061756
% 0.073795
% 0.086206
% 0.102327
% 0.120271
% 0.134366
% 0.143251
% 0.146189
% 0.148024
% 0.140879
% 0.133600
% 0.123866
% 0.112065
% 0.106048
% 0.100711
% 0.092865
% 0.086199
% 0.081167
% 0.077816
% 0.073928
% 0.071923
% ];
% d=[ 0.039684 %d数据y值
% 0.035936
% 0.039848
% 0.037460
% 0.037582
% 0.042013
% 0.048105
% 0.052788
% 0.059851
% 0.075452
% 0.085753
% 0.104524
% 0.117041
% 0.120392
% 0.119326
% 0.113422
% 0.105514
% 0.094912
% 0.085812
% 0.074321
% 0.067386
% 0.057413
% 0.050733
% 0.040744
% 0.041173
% 0.038101
% 0.035418
% 0.032557];
% e=[ 0.063452 %e数据y值
% 0.065448
% 0.066141
% 0.065247
% 0.067798
% 0.072938
% 0.078020
% 0.080517
% 0.084534
% 0.091731
% 0.101428
% 0.109275
% 0.117019
% 0.120379
% 0.117849
% 0.111377
% 0.099289
% 0.085903
% 0.078416
% 0.073114
% 0.068887
% 0.063553
% 0.059130
% 0.057317
% 0.059024
% 0.055005
% 0.057847
% 0.058094
% ];
% f=[0.051219 %f数据y值
% 0.065892
% 0.055956
% 0.049184
% 0.063560
% 0.074998
% 0.060415
% 0.067667
% 0.058828
% 0.079587
% 0.068357
% 0.099085
% 0.098976
% 0.094208
% 0.092482
% 0.093320
% 0.103216
% 0.086699
% 0.078904
% 0.062498
% 0.070742
% 0.068190
% 0.080951
% 0.067120
% 0.067791
% 0.062038
% 0.071721
% 0.071092
% ];
% g=[0.046503%g数据y值
% 0.054286
% 0.039724
% 0.045279
% 0.055584
% 0.064824
% 0.052188
% 0.051663
% 0.045794
% 0.076992
% 0.065128
% 0.090259
% 0.093017
% 0.084527
% 0.091849
% 0.093118
% 0.110003
% 0.101593
% 0.099130
% 0.087800
% 0.094021
% 0.102329
% 0.105936
% 0.092304
% 0.094816
% 0.089412
% 0.099360
% 0.091986];
% % plot(x,a,'-*b',x,b,'-or'); %线性,颜色,标记
% plot(x,a,'-or','LineWidth',1.5,'MarkerSize',3,'MarkerEdgeColor','red','MarkerFaceColor','red');
% hold on;
% plot(x,b,'-ob','LineWidth',1.5,'MarkerSize',3,'MarkerEdgeColor',[0 0.6 1],'MarkerFaceColor',[0 0.6 1]);
% hold on;
% plot(x,c,'--og','LineWidth',1.5,'MarkerSize',3,'MarkerEdgeColor','green','MarkerFaceColor','green');
% hold on;
% plot(x,d,'--o','Color',[1 .5 0],'LineWidth',1.5,'MarkerSize',3,'MarkerEdgeColor',[1 .5 0],'MarkerFaceColor',[1 .5 0]);
% hold on;
% plot(x,e,'--oc','LineWidth',1.5,'MarkerSize',3,'MarkerEdgeColor','cyan','MarkerFaceColor','cyan');
% hold on;
% plot(x,f,'--om','LineWidth',1.5,'MarkerSize',3,'MarkerEdgeColor','magenta','MarkerFaceColor','magenta');
% hold on;
% plot(x,g,'--oy','LineWidth',1.5,'MarkerSize',3,'MarkerEdgeColor','yellow','MarkerFaceColor','yellow');
% hold off;
% axis([450,650,0,0.18]) %确定x轴与y轴框图大小
% set(gca,'XTick',[450:50:650]) %x轴范围1-6,间隔1
% set(gca,'YTick',[0:0.04:0.18]) %y轴范围0-700,间隔100
% legend('Truth','Ours','TSA','λ-net','HSSP','DCSI','TwIST'); %右上角标注
% xlabel('Wavelength(nm)') %x轴坐标描述
% ylabel('Intensity') %y轴坐标描述
(六)高光谱图像拼接组合
(七)高光谱图像快照式模拟编码
(八)高光谱图像分波段显示
(九)mat转tiff格式
数据处理是高光谱相机应用过程中至关重要的环节。通过数据处理,可以提取有用信息和知识,为高光谱相机在遥感、生物医学成像、环境监测等领域的应用提供有力支持。随着科技的不断进步,数据处理技术将在高光谱相机应用中发挥越来越重要的作用。